
498 REVIEWS AND DESCRIPTIONS OF TABLES AND BOOKS

control cards, rules for carrying out computations and gives numerous examples.
Instructions are given to the system in a form of English sentences simulating desk
computing. Indicative of the popularity of this system, is the fact that subsequent
to the issuance of this volume, the system has been rewritten in ASA Fortran and
implemented in several other computers such as the Univac 1108, IBM 360-50 and
65 and CDC 6400 and 6600. While the volume under review indicates control cards
for the 7094 only, various versions are in use throughout the country and a version
has even been unveiled recently in a time-sharing environment.

As an old-fashioned "programming expert", this reviewer has a certain antipathy
toward the concept of "instant programs"-I probably feel that one should have
enough motivation to write the appropriate subroutine, if one wants to use anything
beyond the arithmetic operators and elementary functions. However, the audience
is there, and systems such as OMNITAB have served a real need. The user of this or
similar systems will be well advised to read the section entitled diagnostic features.
What is pointed out there, cannot be repeated too often:

"The concept of a general-purpose program rests in some measure on the assump-
tion that the user, though not a programmer, is familiar with the behavior of the
mathematical functions he is using or trying to compute ... diagnostic features are
incorporated. . . however diagnostic statements are no substitute for sound mathe-
matical analysis, which is necessary to avoid the more serious pitfalls of numerical
computations."

In this regard, it would have been useful to list the possible diagnostic statements
generated by each command. In fact, the numerical methods used in the functions
and routines should have been given. Not only would they be useful to users outside
of OMNITAB, but they are a must when trying to gauge numerical accuracy. In the
final analysis, it probably does not matter whether one learns to program or to use
"packages" or both. Of paramount importance is the question of the accuracy of the
results. The hope is that all users of computers in future generations, those in the
physical as well as those in the social sciences, will learn the elements of numerical
analysis.

MAX GOLDSTEIN

Courant Institute of Mathematical Sciences
New York University
New York, New York 10012

45[12].--F. R. A. HOPGOOD, Compiling Techniques, American Elsevier Publishing
Co., Inc., New York, 1969, vi + 123 pp., 23 cm. Price $6.00.

This elegant monograph, suitable both for self-study and for text use in short
courses on compiling, manages in its brief (126 pages) compass to discuss many of
the most salient issues of compiler writing in an illuminating manner. An introduc-
tory section (28 pages) discusses compiler-related data structures and their computer
treatment, and includes a thumbnail account of hashing. Backus notation is then
introduced. Lexical analysis is discussed in a 10-page chapter which is, unfortunately,
less transparent than other passages of the book. Many of the principal parsing
methods are then nicely surveyed in a 20-page chapter. Code generation is next dis-

REVIEWS AND DESCRIPTIONS OF TABLES AND BOOKS 499

cussed, with emphasis on arithmetic expression code generation. This chapter
includes a discussion of fundamental code-block optimizations, including redundant
store elimination and common subexpression finding, with a following chapter
discussing straight-line register allocation and temporary storage minimization in
more detail. The book ends with a quick comparative survey of various compiler-
writing systems.

J. T. SCHWARTZ

Courant Institute of Mathematical Sciences
New York University
New York, New York 10012

46[12].--P. J. KIVIAT, R. VILLANEUVA & H. M. MARKOWITZ, The SIMSCRIPT II
Programming Language, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1969, xiii +
386 pp., 25 cm. Price $10.95 cloth, $6.95 paper.

SIMSCRIPT is a programming language whose primary orientation is towards
the programming of computer simulations, but which has the facilities of a general-
purpose language. The authors of this book have chosen to emphasize the general-
purpose aspects of SIMSCRIPT rather than its simulation capabilities.

Stylistically, SIMSCRIPT is a very "smooth" language, and its design is highly
professional. The syntax, like that of COBOL, is intended to make programs read
like English sentences, though briefer modes of expression are permitted. With the
syntax stripped away, the algebraic part of the language would look like FORTRAN
with a few ALGOL features, such as conditional statements and DO loops with
variable parameters. There are additional facilities for text manipulation and some
rather elaborate report-generating capabilities (quite useful, of course, in simulation
experiments). The input-output is well planned and easy to use.

It is doubtful that SIMSCRIPT would attract many users, however, solely on the
basis of its general-purpose facilities. The strength of the language lies in its capa-
bilities for handling entities, sets and attributes. An entity is a computational object
capable of having attributes, of belonging to sets, and of owning sets; an owned set
may be thought of as a set-valued attribute. The attribute facility may be used to
create PL/I-like structures, though the set operations have no immediate PL/I
counterpart. Entities may be removed from or added to sets in a number of different
ways, corresponding to various forms of queueing.

The simulation facilities are based upon the notions of a system clock, which
keeps track of simulated time, and of events which are computations to be carried
out at a certain point in simulated time. Events may arise either endogonously (inter-
nally generated) or exogonously (externally generated). After all events associated
with the current time are executed, the system clock is simply advanced to the time
of the next scheduled event or events. Execution of an event, of course, can cause the
creation of new events, which may be scheduled at the current time or at later times.

I disagree with the authors' claim that the general-purpose part of SIMSCRIPT
is comparable in power with ALGOL or PL/I. For instance, SIMSCRIPT does not
have the ALGOL block structure, though it does permit recursive functions. It also
lacks certain conveniences such as the ability to start array subscripts at values other

